Java Object-Oriented Programming . : -

' Java Collections Hierarchy

class ArrayslList

-
- -
-
- .
. i
- .
- - -y
& j
P I I - PR G ety Tl e LR Nt T

Lecture Contents

* Review of Arrays

* Limitations of Arrays

What is an Array

olo
olw

- | | -\

* An array of a type is declared by appendmg open and close square
bracket, [], after the type.

Declaring an Array

* An array is a collection of items of same data type stored at
contiguous memory locations.

int[] intArray;

double[] doubleArray;

String[] bunchOfStrings;

0 1 2 A
0 0 0 0

h.

- i

* Declaring an array only creates the space to store the reference to
the array, it does not allocate memory to store the array.

Allocating Memory for an Array

int[] intArray;

Int[] intArray
o X

- i

Allocating Memory for an Array

e To allocate memory, we use the keyword new.

int[] intArray;
intArray = new 1int[4];

 new will allocate the array and initialize all values to zero.

int[] intArray
® >

oo
Iy
(@] 1)V}
o|lw

h.

- i

* We can also initialize an array with comma- separated sequence of
elements enclosed in curly braces: '

Allocating Memory for an Array

int[] intArray = { 3, 7, 2, 5 };

int[] intArray
® >

w|Oo

ey
NN
a|w

Accessing Arrays

* We use the index to access the array:

int[] intArray = { 3, 7, 2, 5 };
intArray[2] = 4;

int[] intArray 0 1 2 3
® 3 7 2 S
int[] intArray 0 1 2 3
® > 3 7 4 5

h.

- i

 We use the . Length field when we need to find the length of the
array:. ' |

Finding the Length of an Array

int[] intArray { 3 2, 5},

for(int 1 = 0; 1 < 1ntArray length; 1++) {
intArray[i] = 4 - 1;
¥
intArray
0 1 2 3
int] [@ CERT 2 1
int length 4

Limitations of Arrays

* Arrays size is set when the array is instantiated.

int[] intArray;

intArray = new 1int[4];

int[] intArray
[4

1

>

0
0

2
0

3
0

- i

* The only way to add an additional element to the array is to create an

entirely new array and copy the contents into the new array.

h.

- | | -\

* The only way to add an additional element to the array is to create an
entirely new array and copy the contents into the new array.

public static int[] expandByOne(int[] arr, int value) {
int[] newArr = new int[arr.length + 1];
for(int 1 = 0, 1 < arr.length; 1i++) {
newArr[1] = arr[i]; -
}

newArr[arr.length] = value;
return newArr,;

Limitations of Arrays

} int[] arr 0 1 2
@ > 3 7 _ 2

int[] newArr 0 1 2 3

@ > 3 4 2 5

- i

* The only way to add an additional element to the array is to create an
entirely new array and copy the contents into the new array.

Limitations of Arrays

* The only way to shorten an array is to create an entirely new array
and copy the desired contents into the new array.

— The code for this is left as an exercise to the learner.

h.

class Arraylist

* A class that contains an array that automatically extends when
needed. | |

* The type of object is declared using Java generic — a parameter
enclosed in angle brackets rather than parenthesis.

— Declaring and initializing a new ArrayList named list:

ArrayList<String> list = new ArrayList<String>();

— The second type is optional as of Java 7, so simplified:

& ArraylList<String> list = new ArraylList<>();

h.

- i

class Arraylist

* The list is initially empty.
* Adding elements to the end of the list: |

ArrayList<Integer> list = new ArrayList<>();
list.add(4);
list.add(7);

ArraylList<Integer> list
® >

O

- | | -\

class Arraylist

* Inserting elements into the list at an index:

ArrayList<Integer> llst = new ArrayList<>();
list.add(4);

list.add(7);

list.add(1,9);

ArrayList<Integer> list 0 1

® > 4 7
® ArrayList<Integer> list 0 ; 1° 2.
® > 4 9 iy

h.

- i

class Arraylist

* Changing the value of an element in the list:

ArrayList<Integer> llst = new ArrayList<>();
list.add(4);

list.add(7);

list.add(1,9);

list.set(0,-5);

ArrayList<Integer> list 0 1
® > -5 -9

CININ

h.

- | i

class Arraylist

* Deleting an element from the list (given an index):

ArrayList<Integer> llst = new ArrayList<>();
list.add(4);

list.add(7);

list.add(1,9);

list.set(0,-5);

list.remove(1);

ArrayList<Integer> list 0 1 2

® > -5 .9 7

® ArrayList<Integer> list 0 1 |
h. ® > -5 V4

- | i

class Arraylist

* Reading elements at an index from a list:

ArrayList<Integer> llst = new ArrayList<>();
list.add(4);

list.add(7);

list.add(1,9);

int x = list.get(0);

int y = list.get(2);

ArrayList<Integer> list 0 1 2

® > 4 9 /

® int x int y |
M ® [7

Method

Description

E get(int index)

Returns the element at position index in the list

boolean add(E obj)
void add(int index, E obj)

If no index is given, the element, obj, is appended to the
end of the list and true is returned. If an index is given, the
element, obj, is inserted into the list at the index given by
index, shifting all elements starting from that index one
position to the right.

E set(int index,

E obj)

Replaces the element at position 1ndex with the element
obj; returns the element that was previously at that position.

E remove(int index)

Removes the element from position index, shifting all
elements after that element to the left by one index position..

int size()

Returns the number of elements in the list.

@

h.

- i

class Arraylist

 ArraylList and for loop:

ArraylList<Vector> list = new ArraylList<>();

list.add(new Vector(1.1,2.2));

list.add(new Vector(3.3,4:.4));

for(int 1 = 0; 1 < list.size(); 1++) {
System.out.println(list.get(1).getX());

b

h.

w R
W

class Arraylist

* ArrayList and an enhanced for loop:

ArraylList<Vector> list = new ArraylList<>();

list.add(new Vector(1.1,2.2));

list.add(new Vector(3.3,4:.4));

for(Vector v : list) {
System.out.println(v.getY());

b

h.

N
N

Java Object-Oriented Programming . : -

' Java Collections Hierarchy

class ArrayslList

-
- -
-
- .
. i
- .
- - -y
& j
P I I - PR G ety Tl e LR Nt T

