
  

Java Collections Hierarchy 
class ArraysList 

Java Object-Oriented Programming



  

Lecture Contents

● Review of Arrays
● Limitations of Arrays



  

What is an Array

0
0 1 2 3

0 0 0

int offset
int count

char value



  

Declaring an Array

● An array is a collection of items of same data type stored at 
contiguous memory locations.

● An array of a type is declared by appending open and close square 
bracket, [], after the type.

int[] intArray;
double[] doubleArray;
String[] bunchOfStrings;

0
0 1 2 3

0 0 0

int offset
int count

char value



  

Allocating Memory for an Array

● Declaring an array only creates the space to store the reference to 
the array, it does not allocate memory to store the array.

int[] intArray;

int[] intArray

int offset
int count

char value



  

Allocating Memory for an Array

● To allocate memory, we use the keyword new.

● new will allocate the array and initialize all values to zero.

int[] intArray;
intArray = new int[4];

int[] intArray

0
0 1 2 3

0 0 0

int offset
int count

char value



  

Allocating Memory for an Array

● We can also initialize an array with comma-separated sequence of 
elements enclosed in curly braces:

int[] intArray = { 3, 7, 2, 5 };

int[] intArray

3
0 1 2 3

7 2 5

int offset
int count

char value



  

Accessing Arrays

● We use the index to access the array:

int[] intArray = { 3, 7, 2, 5 };
intArray[2] = 4;

int[] intArray

3
0 1 2 3

7 4 5

int offset
int count

char value

int[] intArray

3
0 1 2 3

7 2 5

int offset
int count

char value

`



  

Finding the Length of an Array

● We use the .length  field when we need to find the length of the 
array:

int[] intArray = { 3, 7, 2, 5 };
for(int i = 0; i < intArray.length; i++) {
   intArray[i] = 4 – i;
}

int[] 4
0 1 2 3

4
3 2 1

intArray

int offset

int length

int count

char value



  

Limitations of Arrays

● Arrays size is set when the array is instantiated.

 

 

 

 
● The only way to add an additional element to the array is to create an 

entirely new array and copy the contents into the new array.

int[] intArray;
intArray = new int[4];

int[] intArray

0
0 1 2 3

0 0 0

int offset
int count

char value



  

Limitations of Arrays

● The only way to add an additional element to the array is to create an 
entirely new array and copy the contents into the new array.
public static int[] expandByOne(int[] arr, int value) {
    int[] newArr = new int[arr.length + 1];
    for(int i = 0; i < arr.length; i++) {
        newArr[i] = arr[i];
    }
    newArr[arr.length] = value;
    return newArr;
}

int[] newArr

3
0 1 2 3

7 2 5

int[] arr

3
0 1 2

7 2



  

Limitations of Arrays

● The only way to add an additional element to the array is to create an 
entirely new array and copy the contents into the new array.

● The only way to shorten an array is to create  an entirely new array 
and copy the desired contents into the new array.
– The code for this is left as an exercise to the learner.



  

class ArrayList

● A class that contains an array that automatically extends when 
needed.

● The type of object is declared using Java generic – a parameter 
enclosed in angle brackets rather than parenthesis.
– Declaring and initializing a new ArrayList named list:

 

 
– The second type is optional as of Java 7, so simplified:

ArrayList<String> list = new ArrayList<String>();

ArrayList<String> list = new ArrayList<>();



  

class ArrayList

● The list is initially empty.
● Adding elements to the end of the list:

ArrayList<Integer> list = new ArrayList<>();
list.add(4);
list.add(7);

4
0 1

7
ArrayList<Integer> list



  

class ArrayList

● Inserting elements into the list at an index:

ArrayList<Integer> list = new ArrayList<>();
list.add(4);
list.add(7);
list.add(1,9);

4
0 1

9
2
7

ArrayList<Integer> list

4
0 1

7
ArrayList<Integer> list



  

class ArrayList

● Changing the value of an element in the list:

ArrayList<Integer> list = new ArrayList<>();
list.add(4);
list.add(7);
list.add(1,9);
list.set(0,-5);

-5
0 1

9
2
7

ArrayList<Integer> list



  

class ArrayList

● Deleting an element from the list (given an index):

ArrayList<Integer> list = new ArrayList<>();
list.add(4);
list.add(7);
list.add(1,9);
list.set(0,-5);
list.remove(1);

-5
0 1

9
2
7

ArrayList<Integer> list

-5
0 1

7
ArrayList<Integer> list



  

class ArrayList

● Reading elements at an index from a list:

ArrayList<Integer> list = new ArrayList<>();
list.add(4);
list.add(7);
list.add(1,9);
int x = list.get(0);
int y = list.get(2);

4
0 1

9
2
7

ArrayList<Integer> list

4 7
int x int y



  

Method Description

E get(int index) Returns the element at position index in the list

boolean add(E obj)
void add(int index, E obj)

If no index is given, the element, obj, is appended to the 
end of the list and true is returned. If an index is given, the 
element, obj, is inserted into the list at the index given by 
index, shifting all elements starting from that index one 
position to the right.

E set(int index, E obj) Replaces the element at position index with the element 
obj; returns the element that was previously at that position.

E remove(int index) Removes the element from position index, shifting all 
elements after that element to the left by one index position.

int size() Returns the number of elements in the list.



  

class ArrayList

● ArrayList and for loop:

ArrayList<Vector> list = new ArrayList<>();
list.add(new Vector(1.1,2.2));
list.add(new Vector(3.3,4.4));
for(int i = 0; i < list.size(); i++) {
    System.out.println(list.get(i).getX());
}

1.1
3.3



  

class ArrayList

● ArrayList and an enhanced for loop:

ArrayList<Vector> list = new ArrayList<>();
list.add(new Vector(1.1,2.2));
list.add(new Vector(3.3,4.4));
for(Vector v : list) {
    System.out.println(v.getY());
}

2.2
4.4



  

Java Collections Hierarchy 
class ArraysList 

Java Object-Oriented Programming


